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This paper exploits the connection between statistical mechanics and stochastic 
processes in order to derive a class of macroscopic observables for populations. 
This review treats the dynamics of populations in both constant and variable 
environments and derives in each case the thermodynamic analogs of the 
population parameters. 
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1. I N T R O D U C T I O N  

A large class of biological systems, like systems which statistical mechanics 
studies, consists of a large number  of interacting units. Determining the 
future behavior of these systems generates difficulties analogous to those 
raised in the analysis of the microscopic behavior of a gas. A population, 
for example, consists of a large number  of individuals of different ages and 
different genotypes. These individuals are also subject to different kinds of 
environmental interactions. In order, for example, to predict the time of 
death of a particular individual, we need to know the individual's age, his 
genetic constitution, and the environmental circumstances he will confront. 
These characteristics are hard to determine precisely. In addition, as the 
number  of individuals in the population increases, the characterization of 
the state space becomes less tractable. The methods of classical mechanics 
are not adequate to deal with population phenomena in which so many  
different variables interact. Statistical methods abandon the at tempt to 
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determine the precise demographic and genetic trajectory of each individ- 
ual of any age in any area who can be expected to survive to a certain 
period. It seeks in its stead macroscopic measures which describe the 
average behavior of the system. Thus the mean life expectancy of individu- 
als in a given environment emerges as a macroscopic parameter which 
provides, along with other parameters, a correct basis for the prediction of 
the behavior of the population. 

The aim of this paper is to use the methods of statistical physics to 
provide a systematic basis for the derivation of macroscopic observables for 
population models. This paper revolves around two statistical notions, 
entropy and adaptive value, both of which have precise interpretations in a 
population context. 

The entropy concept we introduce is based on the Kolmogorov-Sinai 
invariant. This invariant has played an important role in recent studies on 
the asymptotic statistical properties of models in statistical mechanics. 
Dobrushin (1) discovered that the equilibrium states of a class of models in 
statistical mechanics can be described as the equilibrium states of certain 
time evolutions of a Markov process. Bowen and Ruelle, (2) exploiting ideas 
due to Sinai, (3~ have shown that the equilibrium states of certain dynamical 
systems can be described by a variational principle. The work of these 
authors have brought statistical mechanics in close contact with the theory 
of stationary stochastic processes and suggests the possibility of finding 
analogues of thermodynamic concepts in other probabilistic and dynamic 
contexts. In Ref. 4, I exploited the connection between statistical mechan- 
ics, stochastic processes, and dynamical systems to provide a new model of 
an evolutionary process. On the basis of this model, one could make precise 
sense of the notion that certain populations have a more complex life- 
history than others. One was able to assign a number to these populations; 
this number is called entropy since its derivation is based on the Kol- 
mogorov-Sinai invariant. 

The notion adaptive value of a population generalizes the entropy 
concept. This new notion has its origins in information theory. Shannon, (5~ 
in his efforts to determine at what rate one can transmit messages through a 
noisy channel, extended his information measure to a measure that de- 
scribed the correlation between the variability of the information source 
and the randomness of the channel. In Ref. 6, I recognized an analogy 
between the engineering problem of coding messages for efficient commu- 
nication in a channel that causes errors in transmission, and the evolution- 
ary problem of a population adapting its birth and death rates in order to 
survive in an environment that randomly affects its demography. On the 
basis of this analogy, one could make precise sense of the notion that 
certain populations have a fecundity and mortality schedule that is corre- 
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lated with the environmental variation. A number was assigned to these 
populations. This new parameter is called adaptive value (6'7~ on account of 
the fact that it measures the capacity of a population to survive and 
reproduce under random environmental conditions, that is, the degree to 
which the population is adapted to the environment. 

The ideas of entropy and adaptive value have been developed in a 
series of papers addressed to population biologists. (8-11~ This paper is 
addressed to physicists. Here I emphasize the connection between statistical 
mechanics, dynamical systems, and information theory in order to bring 
out the ideas that underlie the entropy and adaptive value concepts. 

This paper is organized as follows. Section 2 describes and contrasts 
two types of population models, the classical demographic model due to 
Leslie (12~ and Lotka (13) and a new model based on ideas of statistical 
mechanics, Ref. 4. We distinguish between density-independent and densi- 
ty-dependent models. Density-independent models are discussed in Section 
4. In this section we make explicit the connection between thermodynamic 
parameters and the population variables. The principal analogs are: the 
free energy corresponds to the Malthusian parameter or population growth 
rate; the temperature corresponds to the reciprocal of the generation time. 
In Section 5 we analyze a class of density-dependent models and we discuss 
the relationship between multiple equilibrium states which these models 
exhibit and the phenomena of phase transitions in statistical physics. 
Section 6 distinguishes between various measures of population size and 
introduces the concept of effective size. We relate this parameter to the 
population entropy. The effect of environmental interactions on the popula- 
tion is analyzed in Section 7. This section revolves around the notion of 
adaptive value, a natural generalization of the entropy concept. 

2. POPULATION MODELS 

2.1. Representation as Age Distributions 

We describe two demographic models, the first due to Leslie, (12~ the 
second more recently introduced in Ref. 4. Both models only consider the 
female population and assume that there are enough males not to alter the 
birth or death rates as a function of age of the females we are studying. In 
the Leslie model, the phase space is the set of all age distributions. 
Equilibrium states are described by age distributions which remain constant 
in time. In the second model, the phase space is the set of all genealogies. 
Equilibrium states are described by shift-invariant measures on the space of 
genealogies. These probability measures are described by a variational 
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principle. We shall now discuss the relationship between these two demo- 
graphic models. The relation between the two notions of equilibrium states 
and the derivation of the thermodynamic analogs of the population param- 
eters will be developed in Sections 3 and 4. 

In the Leslie model, we treat time and age as discrete. The population 
is partitioned into age groups corresponding to the unit intervals of time. 
We shall assume that there are n age groups. We then define x i ( t  ) to be the 
number of females in age group (i) at time (t). The proportion of females in 
age group (i) at time (t) surviving to be in age group (i + 1) at time (t + 1) 
is bi(t ), which for i < n - 1 is strictly positive. Furthermore, mi( t  ) denotes 
the average number of daughters born per female to females in age group 
(i) at time (t), these daughters surviving to be in age group (1) at time 
(t + 1). 

Using these definitions, we have the following matrix equation: 

2( t  + 1) = A ( t ) 2 ( t )  (2.0) 

where 

A ( t )  = 

m l ( t )  m2(t) ran(t) 

b l ( t  ) 0 �9 �9 " 0 

0 b2(t ) �9 �9 �9 0 

0 0 - . .  b . _ , ( t )  0 

We shall assume that for each (t), mn_l ( t  ) 7 O, ran( t )>  O. A consequence 
of this assumption is that the matrix A (t) for each (t) is irreducible and 
primitive. These restrictions are not the weakest condition for primitivity to 
hold. The important property of these conditions is that they are satisfied 
by a large class of real populations whose age structure is truncated after 
the last age with positive fecundity. 

We now describe a notion of equilibrium for the dynamical system 
given by the Leslie model. This notion of equilibrium was first introduced 
by Lotka in connection with the continuous analog of the matrix model. 

The population is said to be at Lo tka  equilibrium if for some positive 
real number X and for all t > t 0, 

~(t  + 1) = h2(t) (2.1) 

Thus, at Lotka equilibrium, the relative number of individuals in each age 
group remains constant in time. 

The case of a constant fecundity m i and a constant mortality b i is of 
particular interest. When this condition holds, an equilibrium state exists 
and is unique. 
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This fact follows immediately from the Perron-Frobenius theorem. 
Since the matrix A > 0 is irreducible, there exist vectors ~ = (u;)> O, 

= (v~) > 0 associated with the dominant eigenvalue X such that 

A~ = ),ff ~A = 2~ (~,~) = 1 (2.2) 

The eigenvector ~ is the equilibrium state for the dynamical system 
given by (2.0). 

There exist explicit expressions for the vectors ~, g. 
Let 

I l r ;  j = 1 
l j =  J - l b r  ' j >  1 

The vectors ~ = (u~) and ~ = (v~) are given by 

ui = l J X  i 

I)i ~ i 
\ j = i  // 

where 

(2.3) 

(2.4) 

j = l  

The element v i is equal to the discounted future births to a female aged 
i. This element is called the reproductive value of a woman in age group i. 

The expression T describes the mean age of parents of all newborn 
females when the equilibrium age-distribution is attained. This number T is 
called the generation time. 

The dominant eigenvalue X is the unique positive real root of the 
equation 

1 k ljmj - - 0 ( 2 . 6 )  
j= l  ?,/ 

The matrix A is also primitive. This implies that 

lira A ~ff k ~  -~U = c~ (2.7) 

where ~ = (xi) > 0 is any initial age-distribution. This result means that the 
population converges towards the equilibrium state given by the vector ~. 

Now consider the expression N,--~']=lxi(t), where 2 ( t ) =  (xi(t)} 
denotes the age-distribution at time t. The number N t describes the popula- 

r = j m 2 ,  j (2.5) 



714 Demetrius 

tion size at time t. Using (2.7), we can show that 

lim 1 log N t = log X 

Thus 

where 

(2.8) 

N t ~ e  rt (2.9) 

r = log)t 

The number r, called the Malthusian parameter, thus represents the asymp- 
totic growth rate of the population. 

2.2. Representation as Genealogies 

We shall now describe a model which focuses on what we call the 
genealogies of the individuals in the population, Ref. 4. In this model, time 
and age are also discrete and we partition the population into n age groups. 
We assume as before that mi(t  ) is the fecundity of individuals in the ith age 
group, the offspring of these individuals surviving to be in the first age 
group at time (t + 1). We also assume that the proportion of individuals 
surviving from the (i)th to (i + 1)th age group at time (t) is bi(t ). 

The evolution of the population starting from a single individual age 
(i) can be represented by the process 

~ (1) 

(1) "~_.~_..~.,,._~ (2) 
ml b I 

Z m2 (2) ~'--'--P'-----~ (1) 
(1) b~ 

(i) m b . ~  
(3) 

(i+ l) mi+l ~ b ~ , ~  (1) 
(1) (21 

mi+2 (1) 
( i + 2 ) ~  

bi+2 (i + 3) 

Fig. 2.0. 
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This process can be summarized by the graph G 

715 

bi  b2 

Fig.  2.1. 

mn 

(n - 1 ) b ~'~- E (n)  

where 

b I b2 
(1) ~ (2) > 

denotes the aging process and 

(3) J, 

Fig.  2.2. 

bn- 1 
~, " (n -- 1) ~ (n) 

m2 

(3) (n) 

Fig.  2.3. 

denotes the reproductive process. 
Let ~ denote the set of all doubly infinite paths of the graph G. The set 

~2 is the phase space or configuration space of our system 
An element x E S2 is a doubly infinite sequence 

(...x_l,x0,xl . . . )  
where the x i can assume values between 1 and n. We shall call each 
element x ~ g a genealogy. 

Let 

where 

r: (xk) (x;) 

t 
X k  = X k  + 1 

The equilibrium measures we shall consider will be probability mea- 
sures that are invariant under the transformation T. 
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Example 2.0. Before we formalize the notion of equilibrium state for 
this model, we shall illustrate the distinction between the Leslie model and 
the new model we have described by discussing a simple example. 

We consider the model described by the following graph: 

(0~ ~ (2) 

Fig. 2.4. 

In this model, individuals in age group (1) produce two offspring. All 
individuals in this age group survive to age group (2). Individuals in the 
second age group produce a single offspring and die. 

The set of genealogies ~ are described by the set of all paths of the 
above graph. For example, the element 

. . . 1  1 1 1 . . .  
belongs to a. 

This genealogy describes an individual age (1) at time (t), the in- 
dividual's daughter at time (t + 1), the individual's granddaughter at time 
(t + 2), and so on. 

The sequence 

. . . 1 2  1 1 . . .  
also belongs to a. This sequence describes an individual age (1) at time (0, 
the same individual aged (2) at time (t + 1), the daughter of this individual 
at time (t + 2) and so on. 

Now the genealogies generated by a single individual aged (1) at time 
(t) are given by 

O) 
( 1 ) <  

(2) 

~ (~) 

(2)  
1 

- - ( t )  
1 

Fig. 2.5. 
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We observe that the age distribution at time t can be obtained from the 
cross sections of the genealogical tree at each instant t. The change in age 
distribution at time t = 0, t = 1, t = 2, is given by 

This change can be immediately derived by inspecting the genealogies in 
Fig. 2.5. 

3. THERMODYNAMIC FORMALISM AND POPULATION MODELS 

We now return to the general model described in Fig. 2.0. In order to 
analyze our new model from the point of view of statistical mechanics, we 
will consider a new configuration space obtained by reversing the arrows in 
the graph G in Fig. 2.1 and considering the set of all paths of this new 
graph. Our analysis will be in terms of this new configuration space which 
we denote f~ despite the possible ambiguity. We now introduce a suitable 
topology on the space ~2. 

Let S = (1, 2 . . . . .  n). We assign S the discrete topology. Let 

x= [I s, 
i@Z 

where S i = S, that is X is the set of all functions from the integers Z to the 
set S. 

We give X the product topology. The configuration space f~, which is a 
subspace of X, is given the same topology as X. It is important to note that 
a metric on f~ compatible with the topology is given by 

d ( ( x , ) , ( y , ) ) =  ~ Ix'-y'l 
, = - o o  2 'f (3 .0)  

Consider a continuous function q):f~ ~ R. This function 4) assigns to 
each genealogy x E ~ a real number which depends on the fecundity and 
mortality of the individuals that describe the genealogy. We shall call such 
functions q5 potentials. 

Let M denote the set of all probability measures invariant under the 
shift T. For each/~ E M, let H~(T) denote the Kolmogorov-Sinai entropy 
and q5 = fq5 d/~ the mean energy. The Free energy F, is given by 

F~ = H~(T) + f @cl~ (3.1) 

We shall call a state/2 an equilibrium state and we shall say the population 
is in statistical equilibrium if 

F~= sup[H.(T)+f~d.]  (3.2) 
I~CM 
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The precise expression for q~ will depend on whether or not the 
fecundity and mortality vary with population density. To describe the class 
of potentials we will consider, we recall the formalism used in the study of 
lattice models in statistical mechanics. 

Consider a finite subset J of Z. Let Xj denote the set of mappings of 
the set J into the set S. This set Xj can be described as 

x,=IIs, 
i ~ : J  

The elements in the set Xj can be considered as restricted configura- 
tions of the set X. 

Thus if J = (i 1, i 2 . . . . .  ilji) , where [J] denotes the eardinality of the set 
J,  an element of the set Xj has the form 

(xi~ ,xi2 . . . . .  xil,) with X/k ~,S. 

We will use the symbol x to denote the elements both of the space X 
and X s. The instances in which x denotes an element of the restricted 
subspace Xj will be clear from the context. 

Now, the phase space of our population model is ~, the set of all 
genealogies and not the set X. We take this into account by choosing for 
any J c Z a subset f~j of the space Xj, the elements in the set ~j being the 
restricted configuration of the set ~. 

An interaction on the phase space f~ is defined as any real-valued 
continuous function q0 on the space 

U aj 
J C Z  

of all configuration spaces over the finite subsets J which satisfies the 
following conditions: 

(i) q~(ao) = 0 

where ~ denotes the empty set in Z. 
(ii) For all k E Z, the quantity 

1 sup I (x)l II ~ J,J k 

is finite. 
We introduce some terminology which will facilitate our discussion of 

interactions that arise in population models; see Refs. 14, 15. An interac- 
tion q0 is said to be an n-body interaction if 

e p ( x ) = 0  for all x ~ f ~ j  with I J [ > n  

An interaction is said to be finite range is there exists a real number k ~ N 
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with 

ep(x) = 0 for d i amJ  = m a x l i - j l  > k 
i,j@J 

Translational invariant interactions are functions which satisfy the 
relation 

~(x)  = ~0(Tx) 

where T is the translation operator. 
We will invoke the preceding classification to distinguish between 

density-independent and density-dependent systems in the context of our 
genealogical models. In this classification we study potentials @ : ~2 + ---> R. 

We note that in the case of the Leslie dynamical model given by (2.0), 
density independence describes the condition where fecundity and mortal- 
ity are independent of population size. This implies that: (a) fecundity and 
mortality are time independent, (b) the age distribution at time (t) is 
uniquely determined by the age distribution at time (t - 1). In the context 
of our statistical representation, condition (a) implies that the correspond- 
ing potential oil the one-sided sequence space ~2 + assumes the form 
~j= :p(x o, xj), where each two-body interaction q0(x0, xj) extends by trans- 
lation invariance over the whole space f2 +. Condition (b) implies that the 
interaction is finite range, that is, ~(Xo, x )  = 0 fo r j  > 1. On account of this 
characterization we shall use the term "density independent" to describe 
potentials that have the form ~(x0, x~). 

In the density-dependent dynamical models, age-specific fecundity and 
mortality are no longer constants, but depend on the different age classes. 
The population size at each generation thus depends on the whole past 
history of the population. The potential, in this case, arises from interac- 
tions which depend on the whole genealogical history. The interaction will 
depend now on the sequences (x0) , (Xo,Xl), (Xo, x l ,x2) . . ,  and so on. The 
corresponding potential has the form 

 0(x0) + +  2(Xo,X  ,x2)  + . . .  

We will use the term "density dependent" to describe this class of many- 
body potentials. 

The analysis of the existence and uniqueness of equilibrium states is 
based on properties of an operator defined on the space of continuous 
functions on the one-sided sequence space ~+. The shift operator T:f~ + 
-+ ~ + is a finite-to-one continuous map of f2 + onto itself. For �9 : f~ + ~ R, 
define 

L ,  : f(x)--~ '~  expCb(y)f(y) (3.3) 
y ~  T I(x) 



720 Demetrius 

The map L~, defines a positive operator on C(~2 + ). Let 

m - - 1  

sm (x)= g 
i = 0  

Then 

(i) 

(ii) 

(iii) 

for a l l f  ~ C(fl + ) 

(3.4) 

The following result, Refs. 16 and 17, will be central to our studies. 

" theorem 3.0. If the function q5 satisfies the Perron-Frobenius con- 
dition, then the measure /~( f )=  v(hf) is translation invariant and is the 
unique equilibrium state for the interaction q5. 

We remark, however, that/z is not necessarily a Gibbs state. We recall 
that/~ is a Gibbs state if there exist constants cl, c 2 > 0 and a constant P 
such that 

c, <  [xl c2 (3.7) 
m - - I  ] 

for every x E f~ + and every m > 0 where 

Ix l=  (z : z~a+,z i  = xi,O< i < m -  l} (3.8) 

This means that up to constants [c I, c2], the relative probability of the 
XoX 1 . . .  x m are given by exp[~,'~cb(Tk(x))]. 

Showing that/x is a Gibbs measure for q5 reduces to determining the 
constants cl, c 2 verifying (3.7). This verification exploits the two relations 
(3.9) and (3.10) given below. These relations will be used in the character- 
ization of Gibbs states given in Remarks 4.2, 5.1, and 5.2. 

First we write 

Vark(q5 ) = sup[qb(x) - q b ( y ) l : X  i =Yi, 0 -<< i < k (3.9) 

L~f(x) = ~ exp[ Sm~(y)] f(y) (3.5) 
y ~ T-re(x) 

Let M(f~ + ) denote the set of probability measures on ~+. The func- 
tion q5 is said to satisfy the Perron-Frobenius condition if there are )t > 0, 
h E C(f~ + ) with h > 0 and p ~ M(f] + ) for which 

L~( h ) = Xh 

L~(p) = ~,v with ~,(h) = 1 (3.6) 

i Lg(f)  
xm p(flh I ~ 0  
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It is easily shown that if 

fory, z E[x], then 

K =  ~ V a r k ~ < o 9  
k = 0  

[SmeP(y ) - SMd~(z)[ < K (3.10) 

Secondly, using (3.5), one has for g ~ C(~ + ) 

[ ( L g f ) .  g](x)  = ~] expSm,~(x)f(y)g(Tm(y)) (3.11) 
y E T -re(x)  

We shall exploit this circle of ideas and in particular Theorem 3.0 in 
our analysis of the equilibrium state of density-independent and density- 
dependent models. 

, DENSITY-INDEPENDENT INTERACTIONS AND GIBBS STATES 

Consider the dynamical system ~(t + 1) = A~(t) where A = (%) f> 0 
denote the n • n population matrix given by 

mj for i = 1 

%= bj for i = j + l  (4.0) 

0, otherwise 

where mj/> 0, m n_l > 0, mn > 0, 0 < bj < 1. 
The condition on the fecundity elements mj are sufficient to ensure the 

primitivity of the matrix A. 
The phase space ~2 is given by 

~={xEf i (1 ,2 i=0  . . . .  'n)'axi'xi+'>Of~ 

The dynamical system described by the model (4.0) is density indepen- 
dent. Hence the potential for this model is described by a translation- 
invariant finite-range two-body potential. The interaction is given by 

~p(x0, xl) = log axox~ (4.1) 

This interaction defined on the restricted subspace (x0,xl) extends by 
translation invariance to the one-sided sequence space ~+. 

In order to analyze the equilibrium states of this model, we give 
another characterization of (4.1): Write 

= ( x  a + ,  x0 = k ) ,  1 < k n (4.2) 

The sets {Xk} form a partition of f~+. Write 

Y I k = ( x ~ X  I , x  l = k ) ,  1 < k <  n 
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The interaction given by (4.1) can be defined by 

logm k if x ~  Y l k ,  l < k < n  (4.3) 
q0(x) = l~ if x ~ X~, k > 1 

Let I~ denote the characteristic function of the set Xk, that is 

1, x ~ X  k 
I~(x) = 0, x ~ X k  

Write L for Le where q5 is the translation-invariant potential derived from 
the interaction cp given by (4.1). The restriction of L to the finite- 
dimensional subspace S generated by the characteristic functions I k has a 
matrix representation whose transpose is precisely the population matrix A. 
We will exploit this to prove Theorem 4.0. We refer to Rohlin (18) for 
notions of natural extension and Billingsley (19) for notions of Bernoulli 
shift. 

Theorem 4.11. The system described by (4.1) has a unique equilib- 
rium state which is a Gibbs state. The natural extension to a measure/.~ on 
the phase space a is translation invariant and (a,/x, T) is equivalent to a 
Bernoulli shift. 

Proof .  The transfer matrix of the density-independent interaction 
given by (4.1) is the population matrix A. Since A is irreducible and 
primitive, it follows that the operator L on the restricted subspace S 
satisfies the Perron-Frobenius conditions given by (3.6). Hence by Theo- 
rem 3.0, the measure /L--hv is the unique equilibrium state which is a 
Gibbs state (Remark 4.2). The natural extension of this measure, which is 
also denoted ~ despite the possible ambiguity, is also translation invariant 
(Remark 4.1). The Bernoulli property follows from the fact that the natural 
extension of the partition (X~} with respect to f~ is a weak Bernoulli 
partition for T. Hence by the Friedman-Ornstein theorem, (~2,/~, T) is 
equivalent to a Bernoulli shift. �9 

R e m a r k  4. 1. To make/z into a measure on f~, we use the fact that/x 
defined on f~+ is T-invariant, that is/~(f) = / ~ ( f  o T) for f ~ C(f~ + ). Now 
f o r f  ~ C(f~), define f* ~ C(~2 + ) by 

f * ( x i ) i = o  = m l n ( f ( y )  :y E ~, ~v i = x i for a l l /> /0}  

An argument using the Cauchy criterion shows that 

/~(f) = lim /z((fo T n )*) (4.4) 

exists. 
Now/2 ~ C(f~)*, the dual of C(f~). Hence by the Riesz representation 

theorem,/7 defines a probability measure on ~2. 
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Furthermore, we observe that 

/7(fo T ) =  lim # ( ( f o  T"+I) *) = / ~ ( f )  (4.5) 
n ---3' ~ 

Hence g is also T-invariant. Also/~(f) = /~(f )  f o r f  ~ C(~2 + ). We shall use 
the same symbol /x to denote the extension b7 to fL The meaning will be 
clear from the context. 

Remark 4.2. We shall show that the measure /~ = hp satisfies the 
Gibbs condition with respect to the potential ~b derived from (4.1). 

We denote the characteristic function of the set [x] by I, where the set 
[x] for a given x ~ f~+ is defined as in (3.8). We have therefore 

#ix] = u(hl) (4.6) 

Let us write 

w =  xm"[x l  
exp[ Sm~(X)] (4.7) 

Now for the interaction (4.1), it can be shown, see (3.9), that 

K = Vark(e) = suplog for ally, f 

Now, let d denote the index of primitivity of the matrix A; that is, d is the 
minimum positive integer for which A d is a strictly positive matrix. 

We shall show that the Gibbs condition is satisifed for c 1 = 
X- % x p ( -  d I] qSll - K), C2 =" I[ h llexp K. The verification is in two steps. 

(i) For any z ~ ~2 +, there is at most one w E T-re(z) with w E [x], 
hence using (3.10) and (3.11) we have 

From (4.6) 

Hence 

Lm(hl)(z) = E exp[Smag(Y)]h(y)I(Y) 
y ~ T  mz 

<<. Ilhl[exp[ gm~(x) ]exp K (4.8) 

Xm~[X] = p(Lm(hI)) < Ilhllexp[ S ~ ( x )  ]exp K 

W ~< [[h[[expK (4.9) 

(ii) Now given any z E ~2 +, there is at least one w E T - m - d ( z )  with 
w [x]. 

We conclude using (3.10) and (3.11) that 

Lm+a(hI)(z) >1 exp[ Sm+a~(w) ]h(w) (4.10) 
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The above 
generated by a 
X o X  1 �9 . . X m  _ 1. 

Now from (4.6) and using (4.10), we have 

~km+d~[ x] = v ( L m + d ( h I ) )  > / e x p ( - d [ l ~ [ [ -  K ) e x p [  S m ~ ( x )  ] 

Hence 

W > /X-dexp[ -  d[[(I)[I- K] (4.11) 

From (4.9) and (4.11), we see that the condition (3.7) is verified for 
P = log X. 

The Gibbs condition in effect means that up to constants in [c 1, c2], the 
relative probabilities of the genealogies X o X l ' ' ' X m _  1 are given precisely 
by the number of individuals at time m with ancestry XoX 1 �9 �9 �9 x m_ l. This 
interpretation rests on the fact, shown in Remark (6.0), that 

exp[S,,~b(x)] = axoxax~x2. . . axo ' 2Xm_ 1 

represents at time m, the total number of individuals 
single individual at time (0) and possessing ancestry 

To compute the measure/x and its extension on f~, we need to calculate 
h E C(f~ + ) and p E M(~2 + ). These elements can be explicitly expressed in 
terms of the eigenvectors ~ = (ug) and ~ = (vk) of the population matrix A. 
This correspondence is given in Theorem 4.1 below. The proof exploits the 
relation between the operator L and its matrix representation; this repre- 
sentation, we recall, is the transpose of the population matrix A. 

Theorem 4.1. The elements h ~ C(~ +) and v E M(f~ +) are given 
by 

(i) h ( x ) = a v  k ,  x E X  k and (ii) p ( X ~ ) = ( 1 / a ) u  k 

with a > 0 and where X k is the partition given by (4.2). 

Proof .  Since the operator L satisfies the Perron-Frobenius condi- 
tion, (3.6), we have, 

L n ( f )  
)~. -~ v ( f ) h  for all f ~ C(~2 + ) 

Putting f = l, we get 

Znl(X) 
)t n - - ~ h ( x )  for x ~ f~+ 

Hence h ( x )  only depends on x 0. 
Define w k = h ( k ,  X l , X  2 . . . .  ) for any choice of x l , x 2 , x  2 . . . . .  Then 

since Lh = Xh, we have 

Xw; 
k 
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This means the ~ = (wk) is a left eigenvector of A corresponding to the 
dominant eigenvalue X. However, A is primitive, hence X has geometric 
multiplicity 1. Since ~A = X~, it follows that ~ = a~ for some scalar a. We 
conclude that 

h ( x )  = av  k for x ~ X k (4.12) 

To prove (ii), we note, using the relation between L and its representation A 
transpose, 

1 - ~  (a(k;)) : ~ L n f k ( j , x  1 , X  2 . . . .  ) 

where 

1 if x o = k  
f k ( x ~  . . . .  ) = 0 if Xo ve k 

However, using the primitivity of the matrix A, we have for each k, 

1 ~---~ (a~;)) --+ u k vj (4.13) 

Since L satisfies condition (3.6), we have for each k 

~ Ln(fk(j,x~ , x2  . . . ))---> h ( j ,  x l  , x 2 . . .  )p(fk) (4.14) 

From (4.13) and (4.14) we conclude that h ( j ,  x l , x  2 . . . .  )P( fk)  = u~vj. Us- 
ing (4.12), we have P(fk) = ( 1 / a ) u k ,  which is (ii). [] 

R e m a r k  4 .3 .  In (2.3) and (2.4) the eigenvectors of A are given 
explicitly in terms of the fecundity, mortality elements. Using these values 
and Theorem 4.1, we have the measure/z = hu on f~ +, 

h ( x )  = a 2 ' ]=l jPj  for x E X k 

where 

/jmj and t ' ( X k ) = ( 1 )  /~ P / -  xJ a ~--z 

The extension 
probability measure/~ given by 

t ~ ( X o , X ~  , x 2  . . . .  x t )  = q x o e x + , P x , x 2  . . . P x , _ l x ,  

where 

+ = +v+-  ET~:l@k 

of this measure to the space of genealogies ~2 is a 

(4.15) 
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and 
eij = aijuj / ~ u i  

Using (2.3) and (4.0), the probability matrix P,~ is given by 

P~--- , i >  1 
otherwise 

(4.16) 

Remark 4.4. We can derive explicit expressions for the entropy 
H,(T)  and the f~bdlL. Since (~, ~, T) is a Markov shift, the entropy which 
we denote H is given by 

H = - E E qiPijl~ 
i j 

Using (4.15) and (4.16) this reduces to 

E pjlog pj 
H = EJPj (4.17) 

Now the expressionpj, which can be writtenpj = ujmj, where (uj) is the 
age-distribution at equilibrium, represents the expected future contribution 
of individuals of age class (j) to the ancestry of future generation. Thus H 
measures the spread or variability of this contribution as a function of age. 
Semelparous populations, that is populations that reproduce only once in 
their lifetime, have zero entropy. The corresponding graph is given by 

| 

Interparous populations, that is populations that breed at various 
intervals over their life-cycle, can be represented by the following graph: 

These populations have positive entropy. 
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m 

The mean energy f q~ d/~, which we denote q~, is given by 

_ 2 p /og6m/  
2 JPj (4.18) 

The above expression, which is called the reproductive potential, describes 
the means of the contribution of the different age classes to the equilibrium 
age distribution. 

The expression in the denominator of H and q) is the generation 
time T. 

We have, from (4.17) and (4.18), 

log), = H + �9 (4.19) 

Writing H* = - ~  pjlog p/, the expression (4.19) becomes 

logX -- H*/T + V~ (4.20) 

Remark 4.5. The population parameters we have described have 
precise analogs in thermodynamic theory. To illustrate these analogies we 
consider the thermodynamic formalism in the context of finite systems. 

Let X denote a nonempty finite set. Given a probability measure/~ on 
S, we define its entropy 

S( /~)=  - ~, /t(x)log/~(x) 
x E X  

Let U denote a real-valued function on X and write 

x ~ X  

and 

Z = E e x p [ -  U(x)] 
x ~ X  

It can easily be shown that the maximum of the expression 

S(~)  - ~(V)  

over all probability measures/~ on X is log Z and is attained precisely for 
/x = a where 

e x p [ -  U(x)]  

Z 

In physical applications, we can interpret X as the space of configura- 
tions. Let us write U = fiE, where E denotes the energy of the configura- 
tion x and fi = 1/kT, where T is the absolute temperature and k is a 
Boltzmann's constant. Then we have the statement that the measure a 
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minimizes the expression E - k S T  or maximizes the expression 

k S T  - E (4.21) 

The thermodynamic analogs of our population parameters emerge 
when we compare the right-hand side of (4.20) with the classical thermody- 
namic expression (4.21). 

We observe that the temperature corresponds to the reciprocal of the 
generation time, the mean energy corresponds to the reproductive potential, 
and the free energy is analogous to the growth rate. 

5. DENSITY-DEPENDENT MODELS AND PHASE TRANSITIONS 

Phase transition in one-dimensional models of statistical mechanics 
can arise either in the case of pair interaction potentials that violate a 
strong short-range condition, Dyson, (2~ or in the case of many-body 
interactions of indefinitely high order, Fisher and Felderhof. (21) Now, 
density-independent models are characterized by a class of translation- 
invariant finite-range potentials. These potentials give rise to unique equi- 
librium states. Density-dependent models are characterized by many-body 
potentials of indefinitely high order. These potentials will in general yield 
multiple equilibrium states. We will now consider a class of potentials that 
describe the density-dependent models and study their equilibrium proper- 
ties. This analysis is influenced by the model of Fisher and Felderhof, (21) 
who studied a class of many-body interactions, and the work of Hof- 
bauer (22) and Ledrappier, (23) who studied the corresponding situation in 
terms of models on two-shift spaces. Our motivation and methods are quite 
different. In our detailed choice of interactions we are guided by our insight 
into the behavior of density-dependent interactions in demographic models. 
The associated operator for the potential function we consider is an 
infinite-dimensional Leslie matrix. The biological interpretation of this 
matrix suggests the conditions we must impose on the interaction in order 
to have multiple equilibrium states. In studying the spectral properties of 
the Perron-Frobenius operator we apply results concerning the classifica- 
tion of infinite matrices into positive recurrent, null recurrent, and transient 
types, Ref. 24. 

Consider a population divided into age classes denoted (0) and (1). 
The dynamics is given by the matrix A (t), where 

A ( t )  [ m l ( t )  m2(t) ] 
= [ b , ( t )  o 

We assume that the fecundity is density dependent, while the mortality 
b~(t) is constant. The condition on the fecundity implies that the potential 
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r on ~2 is a many-body potential. The one-sided sequence space f~ + is given 
by 

a + =  x E I I ( O ,  1),ax ..... > 0 , i ~ > 0  
0 

The sets 

I10= (x :x ~a+,Xo= 0) 

x0= (x :x ~ a+,Xo = 1) 

are a partition of f~ +. 
The constant mortality is described by a potential 

q)(x) = logb o , x @ X o 

To describe the time-dependent fecundity we partition Yo into sets of 
the form 

X k = ( x : x E f ~ + , x n = O ,  f o r O < < . n < k - - l ,  x k = l } ,  k =  1,2,3 . . . .  

We describe the potential due to the fecundity elements by 

~5(x)=logbk ,  x ~ X ~  k/> 1 

Hence the potential for the population model is given by 

q ) ( x ) = l o g b  k, x ~ X k ,  k />O 

This potential can be expressed in terms of sum of interactions: 

~l(Xo) + ~2(Xo,Xl) + ~3(Xo,Xl ,x2) + . . .  

where 

(5.o) 

logb o, x o = 1 
~l(x~ = O, Xo4: l  

logbl ,  XoX 1 = O1 
~ 2 ( x ~  O, xoxlvaO1 

(5.1) 

{logbg,  
~ ( X o , X l  . . . . .  xk) = O, 

X o X l , . . . ,  x k = 000 . . .  01 

XoX 1 . . . . .  XkV~O00 . . .  01 

Write L for the operator Lr induced by the potential (5.1) and let I k 
denote the characteristic function of the set X k. The transpose B of the 
matrix representation of the operator L with respect to the basis (Ik} is 
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given by 

0 b 0 b 0 b 0 - . .  

b I 0 0 0 . . .  

0 b 2 0 0 . . .  

0 0 b 3 0 . . -  

Demetrius 

This matrix which is of Leslie type can be considered as describing a 
population with an infinite number of age classes, each age class having a 
fecundity b 0 independent of age. The survivorship b i is age dependent. 

This description will be useful in interpreting biologically the analytic 
conditions we will impose on the elements b k. Write 

k 

Ik=1- ib  r 
1 

This describes the expected survivorship to age (k + 1). Write 

Wk = bole 

The dominant eigenvalue of the matrix B is the unique positive real root of 
the equation 

wk 
k = l  }k k + l  - -  1 (5.2) 

The number r = log X corresponds to the Malthusian parameter or the 
intrinsic rate of increase of the population. We observe from (5.2) that 
when ~ % > 1, the growth rate is positive, whereas ~ w k = 1 corresponds 
to zero growth rate. These conditions are the key to distinguishing between 
unique and multiple equilibrium states for the potential q~ given by (5.1) 
and analyzed in Theorems 5.0 and 5.1. The proofs of these two theorems 
are based on the relationship between the spectral radius of the positive 
operator L and the convergence parameter associated with the matrix 
representation B; see Ref. 24. 

We first analyze the case ~ w k > 1. 
We have the following theorem: 

Theorem 5 . 0 .  Suppose ~ w  k > 1, then the potential gp given by (5.1) 
has a unique equilibrium state. 

Proof. The matrix B is clearly irreducible with period d = 1. The 
elements {b~. n) }, the (i, j )  element of the matrix B ' ,  all exist and are finite. 
Hence by Ref. 24, lim[b/Sn) ] = 1 / R  exists. 1 / R  is called the convergence 
parameter and R the convergence norm. 
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Now a simple computation using the finite truncations of B shows that 
the convergence norm R > 1 and hence that B is positive recurrent. Hence 
by Ref. 24, there exist unique left and right eigenvectors, say (uk), (vk) for 
the eigenvalue l / R ,  with the property that 

(i) ~ u~v~ < 
k = l  

and 

(ii) lim b~.')R " -  ujvi 
, , - ~  ~ ~ UkVk 

A simple computation shows that the spectral radius of the operator 
L~ and the convergence parameter of the matrix B coincide, therefore by 
Ref. 24 Lr satisfies the Perron-Frobenius condition. Hence by Theorem 
3.10 �9 has a unique equilibrium state. �9 

R e m a r k  5. O. The equilibrium state/~ is given by/~ = hv, where 

L ~ h  = vh 

L ~ h  = Xv 

with h ~ C(f~ + ) and v ~ M(~2 + ). 

To compute h and p, we determine the left and right eigenvectors of B. 
We have by considering finite truncations of B and taking the limit 

Wk 
l / k -  ]kk+ 1 

~7= k t9 for k = 0, 1 , 2 , . . .  
v~ - Tu  k 

where 

T= ~j~-I  
j = l  

Remark  5. 1. Theorem 4.1 given in Section 4 can be extended to 
treat the case where the matrix representation is infinite dimensional. We 
omit the details; the argument yields v and h in terms of u~ and G,  
respectively. We have 

p ( x k )  = uk 

and 

h ( x )  = v k for x E X k 

where {Xk) denotes the partition defined by (5.0). As in Remark 4.1 the 
measure # = he on ~2 + extends in a natural way to a measure denoted also 
/~ on the configuration space ~. 
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Remark 5.2. Convergence of logw k implies that/~ = hu is a Gibbs 
measure for qS. This can be shown using the same argument invoked in 
Remark 4.2. In effect the Gibbs condition is satisfied for c 2 = [I h [[exp K and 
c I = ~-dexp(--d][q~ H - K), where K = limw k and d is the index of primitiv- 
ity of the 2 • 2 population matrix. 

The convergence of log w k means that all individuals in the population 
have finite life expectancy. Hence at each instant m the population size is 
finite and the relative probabilities of the genealogies XoX 1 �9 �9 �9 x m are given 
by the number of individuals with this ancestry. 

R e m a r k  5 . 3 .  Divergence of the sequence logw~ implies that/~ is not 
a homogeneous measure. To see this, we note that if (3.7) holds, then for y, 
z E [x], we have 

[Sm(y ) - Sm(Z)l ~ K, where k = l o g ( c 2 / c l )  

We now let x i = O, 0 <  i <  m - l ,  a n d y i =  1, i>1 m ,  z i = O, i>1 m .  Then 
clearly ]logwkl < K and logw k converges. 

The divergence of log w k means that some individuals in the popula- 
tion have infinite life-expectancy. Hence at some instants, with m finite, the 
population will have infinite population size. This means that the relative 
probabilities of the genealogies x o x l . . . x  m cannot be described by the 
number of individuals with the prescribed ancestry. The homogeneous 
condition thus fails. 

We now consider the case ~ w k = 1. In analyzing this case we consider 
the induced system (s T*) defined as follows. Let 

Xo={Xea+,xo= l) 

a*=Xo\ 0 
n = O  

where (0} -- (0, O, O , . . .  ). Consider the set Yk defined by 

Yg = ( x ~  X o , x o  = 1, x i=O,  1 < i <  k ,  xk+  l =  1) 

Let 

Y~-- Ykn~* 

The elements { Y~} are a partition of s The transformation T:  f~+-~2 + 
induces a transformation 

T* : s s 

defined by T * ( x )  = T k + l ( x )  if x ~ Y~. 
In studying the relation between the two systems (~+, T) and (~*, T*) 

the properties we invoke are the following. 
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1. Every T-invariant measure t~ on ~2 + with /~(0)--0 determines a 
T*-invariant measure/~* on a* by 

~*(A) = ~(A n Xo)/~(Xo) (5.3) 

Moreover by Abramov's theorem 

H~(T) =/~ (a*)H, . ( r* )  (5.4) 

2. Every T*-invariant measure o* on a* is of the form /~* for a 
unique T-invariant/~ with/~(0) -- 0 provided 

(k + 1) ~*( r~ ) < o~ 

Now consider the potential qs* defined on ~2" by 

qS*(x) = logw k if x ~ Y~ (5.5) 

The adjoint of the operator L~ : C(f~*)---> C(f~*) has the matrix repre- 
sentation B* = (b~), where b~ = w t. Let R denote the convergence parame- 
ter of the matrix B. Since ~ w  k = 1, then R = 1 and B* is recurrent. 
Moreover, the spectral radius of Lg and the convergence parameter of B* 
coincide. We can now prove the following. 

Theorem 5.1. Assume ~ is given by (5.1) and suppose ~ w  k = 1. 
(1) If ~ ( k  + 1)w k < ~ ,  then qb has two equilibrium states, both 

ergodic. 
(2) If ~ ( k  + 1)w k = or then q~ has a unique equilibrium state. 

Proof. We consider the induced system (~2",~*, T*) with operator 
L~ and matrix B*. 

(i) Since ~,(k + 1)w k < ~ ,  then B* is positive recurrent. Since the 
spectral radius of L~ and the convergence parameter of B* coincide, and 
since B* is positive recurrent, then L~ satisfies the Perron-Frobenius 
condition. The product measure #* on ~* with weights 

w w k 

1 

is the unique equilibrium state for ~5". Clearly/~* is ergodic, and a direct 
computation shows 

H~,(T*) + f o * d ~ * - -  0 

The measure/~* determines a unique ergodic T-invariant measure/~ on ~2 +. 
A direct computation shows 

fo.= 
Hence, using (5.4), we have H,(T)  + f (~dl~ = O. 
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Now let ,0 be a T-invariant measure on f~ with ~0(0) = 0, w =~ ~, and let 
~0" denote the corresponding measure on T*. The partition { Y~} is a 
one-sided generator with finite entropy for ~0". Since ~* is the unique 
equilibrium state for ~*, we conclude that 

Ho~,(r* ) + ( ~ *  &o* < 0 
d 

Hence, we have 

H~(T) + f,d < 0 

and ~ is an equilibrium state for q~. 
We note however, that the point measure 8 0 concentrated at (0) also 

satisfies 

H~o(r ) + f o a l S 0 =  0 (5.6) 

Hence 8 0 is also an equilibrium state for O. The equilibrium states for �9 are 
convex combinations of the ergodic measures/~ and 8 0. 

To complete the proof of the theorem, we note that if ~,(k + l)w k 
= ~ ,  then B* is null recurrent and hence O* has no equilibrium states. 
This implies that the Dirac measure 8 0, an equilibrium state for O, is the 
unique equilibrium state. [] 

Remark 5. 3. The condition ~ w k = I as we have observed corre- 
sponds to a population with zero growth rate. 

The restriction ~ ( k  + I)% < 0 describes a population with finite 
mean generation time. Under these conditions, we have two ergodic equi- 
librium states. The Dirac measure 8 o concentrated at age group (0), 
corresponds to a semelparous population, that is, a population in which 
reproduction is concentrated at a single instant in the individual's life-time. 
The other equilibrium state corresponds to an iterparous population, that is, 
one in which both age groups are represented at equilibrium and reproduc- 
tion occurs in both age classes. 

The restriction ~ ( k  + l)w k = oo corresponds to a population with 
infinite generation time. In this case, one has a unique equilibrium state, the 
Dirac measure. This example describes a population with zero growth rate, 
infinite generation time, and zero entropy. 

The conclusions drawn from these two cases are compatible with the 
analogy we have discovered between generation time and the reciprocal of 
the temperature. For example, perfect crystals have a very orderly struc- 
ture, and at very low temperature, the lattice vibrations will all be in their 
lowest state, which corresponds to zero entropy. Thus a crystal will have a 
very low entropy at temperatures approaching the absolute zero. Organisms 
in the dormant phase have no metabolic activity. These organisms can be 
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considered as having infinite generation time and zero entropy. Organisms 
in the dormant phase are the biological analogs of perfect crystals. 

6. POPULATION SIZE AND GROWTH RATES 

6.1. Census Size and the Malthusian Parameter 

The census size N t describes the total number of individuals in the 
population at time t. In models in which this number has been character- 
ized, one considers the density-independent case where the dynamics is 
given by the time-independent Leslie model. The quantity N t is the norm of 
the age-distribution vector ~(t). At equilibrium, each age class increases at 
the rate ?t which is the dominant eigenvalue of the Leslie matrix A. Thus N t 
increases asymptotically at the rate r = log?t, the Malthusian parameter. 
The aim of this section is to apply the thermodynamic formalism to 
generalize this result to nonlinear models. We will therefore consider a 
population (~, qs) where the only hypothesis we place on the potential q) is 
that it gives rise to a unique equilibrium state/~. We shall assume that the 
measure/~ is mixing. 

Consider an individual aged k. This individual generates a set of 
genealogies which we describe as follows. 

~ (1) 

. ( 1 ) ~  

(k + 2 ) ~  

~ ( k + 3 )  

Fig. 5.0. 
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Consider a particular genealogy 

k X l X 2  " " " x t -  1 

of length t and let 

[X ]  ~- ( y  ~ '~ ,  yO= k, yi ~-- x i ;  l < i < ~) 

For z ~ [x], write 
t - 1  

S,[~(z)] = ~ ~[ T'(z)] (6.0) 
i = 1  

Nk,t = 2 sup expSt[qS(z)] (6.1) 
k , X l , X  2 . . .  x t _  1 z ~ [ x ]  

The quantity Ark, ' describes the total number of individuals in the popula- 
tion at time t, generated by an individual aged (k) at time t = 0. See 
Remark 6.0. 

Write 

N t =  ~, ,Nk, ,= ~,, sup expSt[qS(z)] (6.2) 
k xOXl  . . .  x , - I  z E [ x ]  

This number represents the total number of individuals in the population at 
time (t), assuming that the initial population consists of a single individual 
in each age class. 

Now, let L~ denote the positive operator associated with the potential 
q5 and let h denote the spectral radius of L~. We shall show the following. 

Theorem 6.0. l im t~o~(1 / t ) logN t = r(~), where r(~) = log~. 

R e m a r k  6.0. It is instructive to consider the relationship between 
this result and the result for density-independent models. In the case of 
density-independent models, the adjoint of the operator Lr is the matrix A, 
hence the r(d#) in Theorem 6.0 coincides with the Malthusian parameter. 
We will now interpret the expression St[t~(z)] given by (6.0), when r is 
described by the density-independent interaction qb = logax0x . We will 
show that (6.2) reduces, in this case, to the norm of the age-distribution 
vector fi(t). 

Consider as before the genealogy 

k x l x 2  " " " x t - l  

The expression St[Cb(z)] becomes 

St[ dg(z) ] = loga~x,ax,x2 " " " a t_2 ,_ ,  

and 

e x p S , [ ~ ( z ) ]  = akxax,x . . .a t_2,_ ,  

This expression given at time t represents the total number of individuals 
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with ancestry 

k X 1 X 2  " " " X t -  1 

Assuming that the initial population consists of an individual from 
each age class, then the total number of individuals at time t is 

~,, axo~,axtx 2 �9 . . a t _ 2 t _  1 

x o x 1  �9 " �9 x t -  1 

which we denote N t. The expression for N t can also be written as N, 
= ~ u i ( t ) ,  where ~ ( t ) =  ui(t ) denote the age-distribution at time t. We 
know that for density-independent models, N t increases asymptotically at 
the rate r, the Malthusian parameter. Thus Theorem 6.0 is a natural 
generalization of the density-independent case. 

Proof of Theorem 6.0. The definition we have given, see (6.0), (6.1), 
(6.2), for census size is based on ideas invoked in defining the pressure 
function. (17) Our proof imitates the arguments given in Ref. 17 to charac- 
terize this concept. We sketch the main argument, which depends on the 
following properties: 

(i) L ; f ( x )  = ~ exp[ S,q~(x) ] f ( y )  
y e T-'(x) 

(ii) lim 1 log IIL~I[ = logX 
t--+ oo t 

(iii) lim + logNt= inflogN, 
t---> o c  t 

(i) follows from the definition of L,~; see (3.5); (ii) is based on the fact that 
is the spectral radius of Le. To derive (iii), we use the result that if { a, } is 

a sequence of positive real numbers with an+ m <~ an + % for all n , m  then 
l i m ( 1 / n ) a ,  exists and equals i n f ( 1 / n ) a  n. Thus to obtain (iii), we observe 
that 

sup St +~[q)(z) ] < sup St[ q~(z) ] + sup Ss[ gg(z) ] 
z E[x] z E[x] z E[x] 

From this one gets 

Nt+ , < N , N ,  

Now, by writing a_, = log N t, (iii) follows. 

R e m a r k  6.1. In the case of the density-independent model defined 
by the interaction (4.1), we have the relation 

r = H + g7 (6.3) 

where H and ~ are given by (4.17) and (4.18). The above relation is 
obtained using the explicit expressions for H,  (T) and f gP d/, at equilibrium. 



738 Demetrius 

For arbitrary interactions ~, we have no explicit expression for the 
entropy and the mean energy at equilibrium. However, if t~ denote the 
equilibrium state, an analog of the relation for density-independent models 
holds, namely, 

r(O) = H~(T)  + f (6.4) 

To prove this relation, it is sufficient to show (Ref. 25) that 

r ( O ) = s u p [ H ~ ( T ) + f C ' d t ~ ]  (6.5) 
,u 

The function r(O) is analogous to the pressure function in statistical 
mechanics and the proof of (6.4) uses ideas given in Ref. 17. 

6.2. Effective Size and Entropy 

The census size N t has been characterized for populations described by 
arbitrary interactions q). The asymptotic behavior of N t is described by the 
dominant eigenvalue of the operator L~. We now introduce the notion of 
effective size and show that its asymptotic behavior is given by the 
population entropy H. 

Consider a population on a phase space f~ with equilibrium measure/~. 
We assume/z is ergodic. 

Let f~t denote the set of genealogies generated by a single individual 
during the interval (0, t). Let E denote a subset of f~(0. We associate with 
the set E a measure as follows: 

Consider an element z E E 

and write 

We now write 

z = (Zo,Zl, . . . , zt_l) 

[ Z ]  ~- { X e ~ , X i =  zi,O<'~ i <  t -  1} 

z~E 
We say that E c f~(t) is e-observable if 

/t ,(E) > 1 - 

The effective size N* is defined by 

N*(e) = min{cardE : E C ~-~(t), ~tt(E) > ~ -- •) (6.6) 
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(i) 

(ii) 

Write 

Thus the effective size describes the minimal number of genealogies whose 
total probability exceeds 1 - e. 

We now have the following theorem. 

Theorem 6.1. lim[(1/t)logN*(O ] = H. 

Proof. Consider z E ~T. Since/~ is ergodic, we have by the Shannon- 
McMillan theorem that - (1/ t ) log/~[z]  converges in probability to H. 

Hence, given any 6 > O, 

lira , ( z : z ~ ~ ( t ) : -  ~-mog/z[z]-  H > ~ ) = 0  (6.7) 
l - O o o  

This implies that for r 1 > 0, r + r > 1, r 1 > c, there exists t o such that for 
any t > t o 

1 log/~[z] H , (  6 - 

1 - -  e - -  s < e-& 

E t = ( z : z E f U ) , e  -td4+8) < f f [ z ] < e  -t(H-8)} for t = 1 , 2 , 3 . . .  

(6.8) 

According to the above relation (i), we have/z(Et) > 1 - e. Now, by 
the definition of N*(c), we have that the number of elements in E, is greater 
than N*(O. Since z E E t implies that 

/~[z] > e -t(H+8) (6.9) 

We conclude that 

and hence 

1 ~ ~ /~[z] > N * ( e ) e  - t ( H + 8 )  

z E E t 

1 
 iogU*( ) < + 8 (6.10) 

Now let us order the elements (z (~ } E f~t such that/~[z (0] >/~[z (2)] 
> �9 �9 �9 > #[z(m)], where m denotes the number of elements in f~u). 

To simplify notation, write N*(c) = n*. Then, clearly 

n *  

k = l  

Put X t = ( k : l  <k<<. n*, z (~)EJEt}. Since k ~ X  t together with 1 < k  
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< n* implies that/~[z (k)] E ~2 t - Et,  we have 

k = l  k E X ,  

However/~(fU ) - Et) < q .  Hence 

n* 

k E X t  k = l  

Now k ~ X t implies that/~[z (k)] < e - t ( H - a )  . Hence 

Thus 

which now yields 

which gives 

~,, I~[z (k)] < n,e-t(H-~) 
k ~ X ~  

1 - e - E l ~ n*e  - t ( H - a )  

_1 t 1 < 1 logn* H - 8 -  l O g l _ e _ q  -t 

1 logn* (6.11) H - 2 8 <  7 

From (6.10) and (6.11), we have ( 1 / t ) l o g N * ( e ) ~ H  and the theorem is 
proved. �9 

R e m a r k  6.2.  A heuristic interpretation of the effective size concept 
can be derived as follows. We note that a single individual generates a 
certain number of genealogies. By the Shannon-McMillan theorem, we can 
assert that for arbitrary small e > 0 and 8 > 0, and for sufficiently large t, 
all genealogies can be separated into two classes S l and $2 such that 

(a) for every genealogy x in the class $1 

log/z(x) + H  < 
E 

t 

(b) the sum of the probabilities of genealogies belonging to the class S 2 
is less than 8. 

For all genealogies x @ S 1 , - (1 / t ) log /~(x)  is close to H. Therefore all 
genealogies of the class $1 have approximately the same probability, 
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namely, e -m. This means that the number of genealogies in this class is 
approximately etr/. This number characterizes our effective size Art*. It 
describes the number of typical genealogies and corresponds roughly speak- 
ing to the total number of reproductives in the population. 

By contrast, the census size N t describes the mean number of genealo- 
gies and corresponds to the total number of individuals in the population. 

7. ENVIRONMENTAL INTERACTIONS 

7.1. Adaptive Value 

The main thrust of the analysis we have described so far is based on 
the contrast between the dynamical model ~(t + 1)= A(t) .7( t )  and its 
statistical representation. The macroscopic parameters derived from the 
statistical representation completely characterize the dynamics of popula- 
tions in fixed or constant environments. We will now extend this analysis to 
the case where random environmental forces affect the population dynam- 
ics. In this context, the dynamical description which generalizes the Leslie 
model is given by ~(t + 1) = A (Off(t)  + ~(t), where ~(t) denotes a random 
vector which represents the influence of the environment on the age 
distribution. In the statistical representation of this model, the phase space 
is again described by the set of all genealogies. The environment is modeled 
statistically by giving a probability distribution over the set of all possible 
observed genealogies for each genealogy generated by the population. The 
central concepts derived from this model are the adaptive value, the 
environmental capacity, and the environmental effective size. The adaptive 
value measures the correlation between the variability of the fecundity- 
mortality schedule and the environmental variability. It is a natural general- 
ization of population entropy; in effect, it reduces to population entropy 
when the environment is constant. The environmental capacity is a func- 
tion only of the environment and measures the maximum possible correla- 
tion that exists between a population and its environment. The environmen- 
tal effective size represents the number of individuals that survive the 
random mortality induced by the environmental process. Our main result 
asserts that the asymptotic rate of the increase of this effective size is the 
environmental capacity. This is done in Section 7.3. Section 7.2 discusses a 
new notion of statistical equilibrium analogous to (3.2) and describes the 
structure of the equilibrium states. The material which follows develops the 
principal features of our statistical model. 

Let (~2,/~) denote a population, f~ the set of genealogies, and /L a 
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stationary probability distribution on fL Each individual in the population 
generates a sequence of genealogies. An element in the sequence has the 
form 

x = ( . . .  x 0 , x ,  , x 2  . . . .  , . . . .  ) 

where the values x k assume represent the age class at generation k. The 
environment acts instantaneously at each generation on each genealogy in 
the sequence. The action of the environment, which we assume to be the 
same at each generation, is described as follows. 

At generation ( k ) ,  say, an individual in age class (i) either (a) survives 
with probability a;, subsequently reproducing at generation (k + 1) accord- 
ing to the fixed age-specific fecundity, or (b) dies with probability (1 - ai) 
and is assigned to the class of nonsurvivors which we denote (0), The 
environmental action thus generates new genealogies 

! t 
X t ( ' , , X 2 ,  , X k ,  �9 . . ) = . . . X o , X  , �9 . . 

where x~ will assume the value (i) with probability a i and (0) with 
probability 1 - ai. When x~ = O, the genealogy terminates. 

Now, in general, the probability a i will depend on the age of the 
individual, the age of his parent at his birth, the age of his grandparent at 
his parent 's  birth, and so on. If a i depends only on the individual's age, we 
say that the environment has zero memory.  If the dependence on ancestors 
ceases after m generations, we say that the environment has finite memory  
of order m, otherwise it has infinite memory.  For zero-memory environ- 
ments, the statistical properties of the environment can be completely 
described by the (n) • (n + 1) matrix M = (m/j), where mii  is the probability 
that an individual age (i) survives and rni,~+ 1 the probability that he dies. 
The matrix M is given by 

O/1 

0 

M =  0 

0 

0 0 . . -  1 - a 1 

od 2 0 �9 �9 �9 l - OL 2 

0 O~ 3 �9 �9 �9 1 -- O~ 3 

0 0 �9 �9 �9 a ,  1 -- a~ 

(7.0) 

To formalize this model, we let f~' denote the set of non-terminating 
genealogies resulting from the action of the environment. Let F and F '  
denote the Borel field generated by the cylinder sets in ~2 and ~2', respec- 
tively. The environment is characterized by a probability distribution v ( x , )  
defined over F ' ,  one for each x ~ ~2. For S c F ' ,  we interpret ~(x, S) as the 
probability that the induced genealogy x '  belongs to the set S, given that 
the genealogy generated by the population is x. 
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The ideas of stationarity and finite memory can be formally described 
in the context of our model. Stationarity is described by the condition 

~,(T(x),  T ( S ) )  = t , ( x , S )  (7.1) 

for every x ~ ~2 and S c F' ,  where T is the shift operator. 
To represent the finite memory condition, we describe ~ using the 

doubly infinite sequences f~', the set of genealogies of length t, which we 
denote ~2 '(t). Thus the sequence z = (Zo, Z 1 . . . . .  zt_~) E f~,(t). Write 

[z] = ( w : w E a ' , z i = w i , O  < i <~ t -  1} 

The memory is defined as the least nonnegative integer m, denoted m*, 
which satisfies the condition 

t , ( x , [ z ] ) = t , ( y , [ z ] )  for x, y e a ,  z~a'(o if 
(7.2) 

xi=Yi for - m < i <  t ( t = 1 , 2  . . . .  ) 

In this model, randomness intervenes in two ways: (a) the set of 
genealogies (x} generated by the population is random--this randomness 
is governed by the distribution IX; (b) the set of observed genealogies (x'} is 
random--this randomness is determined by the environmental action. We 
are interested in the correlation between the generated distribution IX on 
and the observed distribution IX' on f~'. We require that this correlation 
reduces to population entropy when the environmental noise has no effect 
on mortality, and reduces to zero when no individuals survive. To describe 
this correlation we need to determine in terms of p and IX the probability 
distributions on the space f~ x f~' and on 9'. 

We let A C f~, B C ~2'. Write C = A X B. We think of the probability 
~0(C) of this subset of the space f~ • a '  as the probability of the joint event 
x E A, x' E B. Now the distribution on 9 is determined by IX and for a 
given genealogy x, the distribution on ~' is determined by p. Therefore 

o~( C)  = ~o(A • B )  = f A e ( x , B  )d~(x )  (7.3) 

The distribution IX' on ~2' is given by 

IX'(B ) = ~o(f~ X B )  = f a v ( x , B ) d ~ ( x )  (7.4) 

Since tx and ~ are stationary, it is easily shown that the processes (~2 • ~', ~o) 
and (~2', Ix') are both stationary, hence to each of the processes (~, Ix), 
(f~ x f~', w), and (~2', Ix') we can associate entropy functions H, ,  H~, and H~, 
respectively. 

Let us write 

~b, = H~ + H , , -  H,o (7.5) 

We call ~, the adaptive value of the population. 
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The term is justified by the following facts. The quantity H, describes 
the generated variability and H,,,  the observed variability in the fecundity- 
mortality distribution; Ho~ represents the joint variability in these two 
distributions. Thus the expression H ~ -  H,,,  which is clearly nonnegative, 
represents the discrepancy between the environmental variation and the 
age-specific variation in reproduction and mortality. If the population 
produces offspring at instances at which the environment has minimal 
effects on survivorship, then this discrepancy is small. The observed and 
generated variability will be small and the population will show little 
fluctuation in growth rate. In the language of the biologists such a popula- 
tion is adapted to its milieu. On the other hand, if reproduction coincides 
with periods during which the environment severely decreases survivorship, 
the discrepancy is large. The growth rate will now undergo fluctuations and 
extinction will result. Such a population is considered unadapted to its 
milieu. 

We shall now distinguish between three types of environmental condi- 
tions which are easy to analyze. These conditions have a precise biological 
interpretation. 

(1) We say that the environmental is of Type I if Ho~ - H,, = 0 for all 
g. Type I environments correspond to the case where the discrepancy 
between the environmental and the age-specific variations in fecundity and 
mortality is zero. In this situation, there is no environmentally induced 
mortality. For this reason we shall call Type I models constant environ- 
ments. 

Example 7.1. The interaction matrix due to the constant environ- 
ment with zero memory is given by the matrix M, see (7.0), with a; = 1 for 
all i. The adaptive value ~ = H, where H is the population entropy given 
by (4.17). 

(2) Type II environments have the property H~ - (H,o - H~,) = 0 for 
all g. This is characterized by the condition that the stochastic processes 
(~2,/~) and (~',/~') are independent. This corresponds to the case in which 
there is high environmentally induced mortality. 

Example 7.2. The interaction matrix due to a Type II environment 
with zero-memory is given by the matrix M with identical rows. This matrix 
has entries a i = 0 for all i. The adaptive value ~ = 0. 

(3) Type III environments are described by the condition H ~ - H ,  
independent of the distribution ~. This class of environments, which we call 
uniform, occurs when mortality in each age class is affected to the same 
extent by the external environment. 
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Example 7.3. For a uniform environment with zero-memory, the 
rows of the matrix M are permutations of the same two numbers a, 1 - a. 
Hence H~ - H~ = a l o g a  + (1 - a)log(1 - a). The adaptive value is given 
by 

= H g -  [ a l o g a  + (1 - a)log(1 - a ) ]  

Now the adaptive value depends both on the population and the environ- 
ment. We now introduce a quantity which depends only on the environ- 
ment. We note that the function ~ is bounded above by log n, where n 
denotes the number of age classes. Hence ~, has a least upper bound K as tt 
varies over all stationary measures. We denote this least upper bound K~ to 
indicate its dependence on the environment and we call it the environmen- 
tal capacity. We shall show in Section 7.2 that K~ measures the asymptotic 
rate of increase of a population in the given environment. 

In Example 7.1, the capacity 

2]= 1 p/og pj 
K, = sup n - log 2 

(p+) E j = l  jp+ 
�9 In Example 7.2 

K ~ = 0  

In Example 7.3 

K~ = a log2  + a l o g a  + (1 - a)tog(1 - a) 

7.2. Capacity and Equilibrium States 

The structure of the equilibrium states for constant environment 
models, discussed in Sections 4 and 5, depends on the interaction ~. In 
analyzing this structure the distinction between density-independent and 
density-dependent models was crucial. The aim of this section is to extend 
the notion of equilibrium state in constant environment models to the case 
of the population growth in variable environments. 

The structure of the equilibrium state is determined by the kernel p. 
We now introduce our new notion of equilibrium as follows. 

Consider a population with phase space fL We call a distribution/2 on 
the set of genealogies f2 an equilibrium distribution for the environment if 

~ = sup (H~ + H / -  H,~) (7.6) 

where the supremum is taken over all stationary distributions on ~2. Thus a 
population is in equilibrium with the environment if its adaptive value is 
equal to the environmental capacity K.. 
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Let E, denote the set of equilibrium states. To characterize the struc- 
ture of these states, we draw on certain ideas from convex analysis. 

We first note that the phase space ~2 endowed with the topology given 
by the metric (3.0) is a compact space. Let M(f~) denote the set of 
T-invariant probability measures on M(f~). From the Riesz representation 
theorem, we may think of M(f]) as a subset of the dual sPace C(~2"), where 
C(f~) is the space of continuous real-valued functions on ~2, and we set 
~ ( f )  = f fdt~ for f ~ C(f]). This gives a topology on M(f~), the so-called 
weak topology. With this topology, M(f~) becomes a compact metrizable 
space. It is also a convex subset of C(~2)*. Moreover, the extreme points of 
M(f~) are precisely the ergodic invariant measures on fL 

We can now state the following theorem: 

Theorem 7.0. For zero-memory environments, the set of equilibrium 
states E, for a given environment ~ is a nonempty set of probability 
measures which is convex and closed, hence compact in the weak topology. 
The extremal points of this set are exactly the invariant equilibrium states 
which are the extremal points of the set of all invariant probability 
measures, that is, the ergodic equilibrium states. 

The proof of this theorem rests on showing that +~ is upper semicontin- 
uous on M(f~). To show this we need a characterization of +, in terms of 
finite probability spaces. 

Write 

I X ]  ~--- {Z : Z ~ ' ~  : Z i ~ "  x i , O •  i < n} 

[x ' ]  = { z ' : z ' C a ' z ; = x ; , 0 ~ <  i <  n} 

Define 

H(,,) = _ 1 2 /z[ x ]log/~[ x ] 
n X o  ~ X l  ' , , . ~ X n  

H},, ) = _ 1 2 /.t[ x'  ]log/x[ x ']  
n xb, xi . . . . .  x" 

H~') = - i E w ( [ x ] , [ x ' ] ) l o g w ( [ x ] , [ x ' ] )  
]t l  X o X I  , . . , ~ X n  

xbxl . . . . .  x'~ 

It is known that 

H(.n)--~ H~, H(,")--> H~,,, and H(~)--> H,o 

Hence 

= l i m  [ H (n) + H(, n ) -  H(n)i 
n--->oo L tL 

- - , u  (~o .] 

We now have the following proposition: 

(7.7) 

(7.8) 

(7.9) 
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Proposition, ~. is an upper semicontinuous function on M(~2). 

Proof.  We shall show that Hy and H~ - H~ are each upper semicon- 
tinuous. 

Consider H~Y ). Using (7.8) and the zero-memory condition, it is clear 
that for each n, H~(, n) is continuous. Moreover from (7.8) H~(? + ') < H~(, "). 
Since H~, is the limit of a decreasing sequence of continuous functions, it is 
upper semicontinuous. The same argument applies to H,  - H~. Using the 
fact that the sum of two upper semicontinuous functions is upper semicon- 
tinuous, the proof is complete. [] 

The above proposition and our remarks concerning the structure of 
M(f~) immediately yield the proof of Theorem 7.0. 

P r o o f  o f  T h e o r e m  7.0. It is sufficient to observe that since q~ is 
upper semicontinuous and is bounded, the ~p, assumes its supremum on at 
least one of the extremal points of the set M(f~). [] 

R e m a r k  7. O. If the environment is constant or uniform, then I E, I 
= 1. This follows from the fact that the mapping H~, : M(f~)---) R assumes 
its supremum on a unique point of the set M(12), The equilibrium state in 
this case corresponds to pure thermodynamic phases. 

R e m a r k  7.1. We should emphasize that Theorem 7.0 assumes that 
the environment has zero memory. The extension to finite or infinite 
memory environment is not fully understood. However, preliminary studies 
indicate that the condition levi > l, corresponding to phase transition, 
seems possible even for zero-memory systems. 

Remarks 7.0 and 7.1 should be contrasted with our results concerning 
the structure of the set of equilibrium states E+ for a given potential 69 on 
the phase space. In these cases we recall that for all density-independent 
models, we have IE+I = 1 and the unique # ~ E+ is a Gibbs state. The case 
]E+[ > I, corresponding to mixed phases only occurs for a certain class of 
density-dependent models. 

7.3. Environmental Effective Size 

We will first formally define the notion of effective size and then 
interpret the mathematical operations invoked. We denote by f~(m-~0 and 
a,(0, the set of genealogies of the form (Xo, X 1 . . . . .  Xm+t) and (x~), 
X ' l , . . . ,  x;), respectively. 

For each x ~ ~-~m + t, write 

i x ]  = ( z  : z  ~ 2 ,  zi = xiO <<. i < m + t)  



748 Demetrius 

and for x' E ~y(o, write 

Ix '  1 = (z '  :z '  ~ a ' , z "  = x ; ,O < i < t} 

Let us assume the finite memory condition given by (7.2), and that the 
environment has memory m*. 

Then for each x' ~ ~2'(0, x ~ ~2 (m+0 withy,  )7 ~ Tm[x] 

v ( y , [ x ' ] ) = v ( ) 7 , [ x ' ] )  if m>~ m* 

We can therefore write for each x ~ f~m +t and E c ~2 '(~ 

P t ( x , E ) =  • p ( y , [ x ' ] )  if y E  Tm[x]  (7.10) 
x '~E 

Now let L denote the set of mappings f:f~,(t) ~ ~2(,~+ o. 
Let X denote the set of elements x E f~(m+o such that 

Write 

and 

t,'t(x, f - l ( x ) )  > 1 - - c  

Nt**(f ,  e) = cardX 

(7.11) 

Nt**(e) = max Nt* *(f, e) (7.12) 

the maximum being taken over all mappings f. We call Nt**(c ) the effective 
size. 

We now explain the ideas behind the above operations and our reason 
for calling Nt**(e ) the effective size. In order to make the explanation more 
intuitive, we shall assume in the discussion that follows that the environ- 
ment has zero memory, that is m = 0. 

To understand the connection between genealogies and population 
size, a connection which is crucial to our interpretation of N**(~), we note 
that each individual at generation (t) has a unique "backward" genealogy 
which we write xt, x t_ 1, x t -  2, �9 �9 �9 Xo. Thus to each genealogy generated up 
to time (t) corresponds a single individual. This implies that the number of 
genealogies generated up to time (t) describes the total number of individu- 
als, that is, the population size at time (t). 

Now consider the set of genealogies generated up to time (t). At 
generation (k) say, each individual age (i) survives with probability (ai) and 
dies with probability (1 - ai). Thus the generated genealogy 

x = ( x 0 ,  x l  . . . . .  . . . .  ) 

with x k = (i), is transformed into a genealogy 

x ' =  . . . . .  . . . .  ) 



Statistical Mechanics and Population Biology 749 

where x~ = (i) with probability (ai) and (0) with probability (1 - ai)- 
The genealogies with x~ -- 0 are the terminating genealogies since the 

symbol (0) represents the nonsurvivors. The terminating genealogies make 
no further contribution to the population size. This contribution is com- 
pletely determined by the nonterminating sequences. Our problem is to 
characterize the number of nonterminating sequences. 

Now given a mapping f :  f~,(0 ~ a(0 we observe that if x, y ~ f~(0 then 
f - l ( x  ) • f -  l(y) = O. 

Thus to each f we can associate a partition of IT (~ into disjoint sets. 
Furthermore for each f, we can consider the expression pt(x, f - l ( x ) )  as 
describing the probability that for a given genealogy x generated, the 
genealogy x' observed belongs to the set f - l ( x ) .  The condition (7.11) 
means that the genealogy x' observed when x is generated belongs to the 
set f - l ( x )  with arbitrary high probability. 

Now each element x' E ~,(t) is a finite sequence derived from the set 
of nonterminating genealogies f~'. Hence for each f,  the set of elements 
x ~ i2 satisfying (7.11) represents those generated genealogies which result 
in a nonterminating genealogy with arbitrary high probability. The set X 
thus describes the set of genealogies that are not perturbed by the environ- 
mental noise. X clearly depends on the partition induced by f. The 
maximum of the number of elements in X, this maximum being taken over 
all mappings f, thus gives the number of genealogies that have not under- 
gone any distortion as a result of the environmental noise. Owing to the 
correspondence between genealogies and individuals, this number repre- 
sents the total number of individuals whose mortality is not affected by the 
environmental noise~ This is the effective size given by (7.12). 

We can now state the main result of this section. 

Theorem 7.1. limt_,~(1/t)logNt**(e ) = K~ 

The proof of this theorem, Ref. 25, exploits arguments in coding 
theory (26'27) and is based on two inequalities valid for large t: 

(i) Nt**(e ) < e '(K~+~) 
(ii) N**(e) > e t(K~-~) 
Statement (i) is based on Feinstein's theorem. (26) Statement (ii) is 

derived using ideas due to Winkelbauer. (2s) 
Theorem 7.1 should be constrasted with (2.9) and (6.12) which relates 

other measures of population size with the Malthusian parameter and 
entropy. 

Furthermore we note that for a population (~2,/0 in equilibrium with 
the environment, the adaptive value +, coincides with the capacity Kp. The 
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effective size is therefore given asymptotically by 

N,**~e'+, 

Demetrius 

(7.13) 

Remark. We give a heuristic account of (7.13). Consider a set of 
genealogies generated by an individual aged (1), say. After t generations, 
for t large, this set falls into two classes, a class consisting of about et~/~ 
elements, corresponding to the typical genealogies, and a class of remaining 
genealogies of low probability. Each genealogy generated up to time t 
corresponds to an individual. The typical genealogies will generate as a 
result of the environmental disturbance, approximately e~(~ '-~-~ genealo- 
gies. Hence the total number of genealogies resulting, that is, the effective 
size, is given by 

e t (H . )  . e t (H ~ , -H ~)  = etq~ 

8. CONCLUSION 

We shall make a resume of the main results of this paper from a point 
of view different from that which was developed in the preceding. We will 
describe the biological problems that we have analyzed and then indicate 
the role statistical mechanics and information theory have played in the 
analysis of these problems. This treatment should make more explicit the 
connection between population biology, statistical physics, and information 
theory, which is the main theme of the paper. 

Classical models of population dynamics are based on two main 
concepts, the Malthusian parameter r and the census population size N~. At 
equilibrium the relation between these two parameters is given by 

N t ~ e  tr (8.0) 

This result is the cornerstone for most work in population genetics and 
ecology, and the fundamental theorem of natural selection as formulated 
by Fisher (29) is based explicitly on this relation. However, the models on 
which this result is based essentially neglect two factors: 

(i) Populations are demographically heterogeneous, that is, their birth 
and death rates are age dependent. 

(ii) The age-dependent birth and death rates are subject to fluctua- 
tions due to the external environment. 

This paper has dealt with these two factors by introducing a new class 
of population models that incorporates demographic heterogeneity and 
environmental variation. 
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In constant environment models, the two main parameters introduced 
are population entropy H and the effective population size. The entropy H 
measures the spread of the fecundity-mortality distribution. The effective 
population size N,* describes, roughly speaking, the total number of repro- 
ductives in the population. The connection between these two parameters is 
given by the relation 

N t * ~ e  tl~ (8.1) 

In variable environments, the two main parameters introduced are the 
adaptive value tp and the effective size Nt**. The measure ~ represents the 
degree to which the fecundity-mortality distributions of the individuals in 
the population are matched to the environmental variation. The parameter 
Nt** describes the number of reproductives whose mortality is unaffected 
by the environmental disturbance. At equilibrium, we have the relation 

N , * * ~ e  t~ (8.2) 

The connection between population biology, statistical physics, and 
information theory lies in the methods that we have used to obtain (8.1) 
and (8.2). These methods are distinct from the techniques that have been 
applied in classical population models. 

The analyses of classical age-structured models are based on the 
dynamical equation 

~(t + 1) = A (t)X(t) + ~(t) (8.3) 

where if(t) denote the age distribution at time t, A (t) the population matrix, 
and ~(t) an environmental factor. The critical parameter in this class of 
models is the age distribution. One investigates how this age distribution 
evolves in time. 

In the formulation we have introduced, we consider the statistical 
representation of (8.3). This is given at equilibrium by the system (~, Ix, T), 
where ~ denote the set of genealogies, T the shift operator, and /~ a 
T-invariant probability measure on ~2. The critical parameter in our models 
is the genealogy of an individual and we study the distribution of genealo- 
gies under different kinds of interactions between individuals. 

In the constant environment models, ~/(t)= 0. The matrix A(t)  is 
characterized by a potential function qb on the space of genealogies. 
Equilibrium states are described by measures/~ which satisfy (3.2) 

The potential function q) is chosen in such a way that the equilibrium 
states in the dynamical model and its statistical representation coincide. 
The expression (3.2) has its origins in statistical physics and constitutes the 
basis for the thermodynamic analogs we have derived. The population 
entropy H is precisely the Kolmogorov-Sinai entropy H;,(T), in the equi- 
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librium state/i. The analogy with phase transitions is based on the fact that 
the set of equilibrium states Ee for a certain class of interactions q5 has the 
property [E~] > 1. The case lEe[ = 1 which arises in density-independent 
models corresponds to "pure thermodynamic phases." 

In the variable environmental model, r/(t) --/= 0. In the statistical repre- 
sentation of these models, three stochastic processes are involved: namely, 
(a,/~), (~2, g, f~'), and (~2',/~'). The population process generates genealogies 
x ~ ~2, the probability distribution on the genealogies being described by/~. 
The environmental action which is described by the measure p perturbs 
genealogies x ~ ~2. The measure/~' is the measure induced on ~2'. 

Equilibrium states for this class of models are described by measure/~ 
which satisfies (7.6). This expression has its roots in information theory and 
provides the basis for the analogs between the information theoretic con- 
cepts we have noted. 

In this class of population-environment interaction, the analogy with 
phase transition arises from the fact that for a certain class of interaction p, 
the set E~ of equilibrium states has the property IE,[ > 1. By contrast with 
the constant environment models, we should point out that the structure of 
the equilibrium states for this class of models is incompletely understood. 

The asymptotic relations (8.1), (8.2) should be contrasted with the 
classical asymptotic relation (8.0). In effect, population entropy, adaptive 
value, and the Malthusian parameter are all related. 

For constant environment models, we have 

r = H + ~ (8.4) 

where ~ denotes the reproductive potential. The expression ~ is a measure 
of demographic heterogeneity. Thus when ~ = 0, the entropy and the 
Malthusian parameter coincide. In this case, the effective population size 
reduces to the census size. 

For variable environments 

+ = H -  H* (8.5) 

where H*, which is equal to Ho - H,,, measures the degree of variability of 
the environment. Thus when H* -- 0, a constant environment, the adaptive 
value is precisely the entropy and the two measures of effective size 
coincide. 

As a final remark, we should point out that although we have re- 
stricted our discussion to demographic models, the analysis we have de- 
scribed applies to a wide class of models, in particular, models of cellular 
development and the evolution of macromolecules (3~ Similar analogs to 
thermodynamic relations exist, and the new concepts which emerge from 
the application of statistical physics ideas play an important role in the 
study of these phenomena. 
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